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A formalism is developed for calculating the normal modes of vibration of an ionic-crystal

slab having the NaCl structure.

normal to the z axis and is of infinite extent in the x and y directions.

The slab consists of a finite number of (100) planes oriented

The derivation of the

dynamical matrix takes into account the free surfaces of the slab as well as the effect of re-

tardation of the Coulomb interaction.

Retardation is easily excluded from the theory by letting

the speed of light ¢ become infinite in the Coulomb contributions to the dynamical matrix. The
unretarded normal-mode frequencies and eigenvectors are calculated for a seven-layer slab
for values of the wave vector chosen along the x axis and ranging from zero out to the boundary

of the two-dimensional first Brillouin zone.
discussed in detail.

The properties of the optical surface modes are
If an electromagnetic wave is incident upon the slab, the optical properties

of the slab can be found by calculating the total electric field which exists in the regions of
space on either side of the slab as a superposition of the incident field and the induced field
arising from the 10nic motion within the slab. For both P and S polarizations of the incident
field, peaks in the infrared absorption are found to occur at frequencies corresponding to cer-
tain optical modes of the slab. The calculated results offer a qualitative explanation of the
transmittance of a thin LiF film as experimentally observed by Berreman.

I. INTRODUCTION

In recent years there have been several theoreti-
cal investigations of the normal modes of vibration
of a point-ion model of an ionic-crystal slab of finite
thickness and extending to infinity in the two lateral
directions.!=® Because of the translational symme-
try in directions parallel to the plane of the slab,
one assumes normal modes in which the ionic dis-
placement amplitudes are wavelike in these direc-
tions. The problem is then to determine both how
the frequencies w of these normal modes depend on
the two-dimensional wave vector E in the plane of
the slab and how the ionic displacement amplitudes
vary in the direction perpendicular to the slab for
each normal mode.

Investigations of the normal modes have been
carried out both excluding and including the retar-
dation of the Coulomb interaction. Inclusion of re-
tardation significantly affects only the long-wave-
length optical modes. Those theories which exclude
retardation will be discussed first.

The unretarded normal modes of the slab can be
classified as either bulk modes or surface modes.
Bulk modes are ones in which the variation of the
ionic displacement amplitudes in the direction per-
pendicular to the slab is wavelike in character.
Surface modes are ones in which the ionic displace-
ment amplitudes decrease with increasing distance
into the slab from the surfaces, i.e., they are lo-
calized at the surfaces. Both bulk modes and sur-
face modes can also be categorized as acoustical or
optical in the usual manner and as transverse or
longitudinal depending upon the direction of the ionic
displacements at E =0. Modes for which the ionic

4

motion is parallel to the slab at E= 0 are transverse
modes; if the motion is normal to the plane of the
slab, then the modes are longitudinal.

Fuchs and Kliewer! determined the properties of
the optical modes of vibration of an ionic-crystal
slab of the NaCl type in the long-wavelength approx-
imation by introducing a macroscopic polarization
and an average electric field as slowly varying func-
tions of position within the slab. Using this approx-
imation, and neglecting any changes in the short-
range forces acting on surface ions, the equation of
motion of a pair of ions leads to a set of integral
equations which yield the properties of the optical
modes. Choosing their z axis normal to the plane
of the slab and taking ¢,=0, they found the optical
bulk modes of the slab to exist at the usual trans-
verse-optical and longitudinal-optical frequencies,
wro and wyo, of the infinitely extended crystal.
Moreover, they found two optical surface modes in
which the ionic displacement amplitudes decreased
exponentially with increasing distance into the slab
from the surfaces. The frequencies of these sur-
face modes are at wpo and wy, when ¢ ,=0, the
lower mode being transverse and the upper mode
longitudinal. As ¢, increases, they start to move
together and approach a frequency between wyo and
wpo. Also, these modes are such that the ionic
displacement amplitudes are constant for ¢,=0;
i.e., the surface modes cease to be localized at
the surfaces in the q=0 limit.

Lucas? has examined the normal modes of a slab
for a: 0 in a calculation which included changes in
the short-range forces acting on surface ions. For
a slab of N layers of ions, his calculation reduced
to a study of two coupled parallel diatomic chains,
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each having N ions. All transverse modes of the
chain will then be doubly degenerate modes of the
slab because of the symmetry of the x and y direc-
tions in the plane of the slab. By first solving this
double chain problem for N = and then applying
appropriate boundary conditions for the case of fi-
nite N, he found two nearly degenerate transverse-
optical (TO) surface modes with frequencies slightly
below wro. These are modes in which the ionic
displacements are of even and odd parity with re-
spect to the center of the slab. His results differ
from those of Fuchs and Kliewer! in that he found
two transverse surface modes near wgq, rather
than one; moreover, both of the modes are localized
at the surface for a= 0.

More recently, Tong and Maradudin® have cal-
culated the normal modes of a point-ion model of a
NaCl slab bounded by a pair of (110) faces normal
to the z direction. Their solution uses lattice-dy-
namics techniques including corrections to the
forces acting on surface ions and requires the diag-
onalization of a 6NX6N (N=number of layers of
ions in the slab) matrix for values of a throughout
the two-dimensional first Brillouin zone. They
performed this calculation and reported finding a
total of six optical surface modes and two acoustical
surface modes. At E=0 they found two nearly de-
generate TO surface modes, of even and odd pari-
ties, whose frequencies are slightly less than wyg.
Each of these modes is doubly degenerate and lo-
calized at the surface for EI =0. This essentially
agrees with the results found by Lucas. Going away
from 21'= 0, they found two nearly degenerate optical
surface modes at frequencies roughly midway be-
tween wyo and wyo. They found that these two
modes have limiting frequencies at §= 0 well below
wyo and are not localized at the surfaces at the point
Ef= 0. None of these optical surface modes seem to
exhibit the wave-vector dependence predicted by
Fuchs and Kliewer.

Thus the results of Lucas agree with those of
Tong and Maradudin at the point Ef =0 and the results
of Fuchs and Kliewer seem to disagree both with
Lucas and with Tong and Maradudin. Lucas ex-
plained the discrepancy between his results and
those of Fuchs and Kliewer as being due to their
neglect of the modifications of the forces acting on
the surface ions. Tong and Maradudin stated that
Fuchs and Kliewer made an invalid long-wavelength
approximation by converting two-dimensional lattice
sums of Coulomb forces between the ions into inte-
grals. They also noted that Fuchs and Kliewer did
not modify the forces on surface ions.

Chen, Allen, Alldredge, and de Wette* have
studied the normal modes of vibration of a 15-layer
NaCl slab, using the same model as that of Tong
and Maradudin. They plot the dependence of the
normal-mode frequencies on E in considerable de-
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tail for 21' values along selected paths in the two-
dimensional Brillouin zone. Their results differ
significantly from those of Tong and Maradudin;

one pair of surface modes has a different behavior
near Ei =0, and at the edge of the Brillouin zone they
find many surface modes existing in gaps between
bands of bulk modes. In Sec. IX we shall discuss
their results in more detail.

Kliewer and Fuchs® have also studied the effects
of including retardation of the Coulomb interaction
on the normal modes of an ionic-crystal slab. They
found that these coupled phonon-photon modes of
the slab fell into two classes: nonradiative modes
with exponentially damped fields outside the slab,
and radiative modes with incoming or outgoing
waves outside the slab. The nonradiative modes
exist for ¢ >w/c, where c is the speed of light and
g is the magnitude of a, and were calculated using
a technique very similar to that used for the unre-
tarded modes. When retardation is included, the
two optical surface modes were found to exist only
for ¢ >w/c. Both modes approach w=wro as g ap-
proaches the line ¢g=w/c. As g increases from
wro /c, the frequency of the high-frequency mode
increases rapidly to a maximum below w=wyo and
then gradually drops back down, whereas the fre-
quency of the low-frequency mode increases mono-
tonically. Both modes than approach a common
frequency between wyg and wyg, as did the unre-
tarded modes, when ¢ > w/c.

In a recent paper, Bryksin and Firsov® have also
derived expressions for both the unretarded and
retarded dynamical matrices of an ionic-crystal
slab. However, they did not make any actual cal-
culations of the normal modes of a slab containing
a specific number of layers of ions and did not pre-
sent complete expressions for all elements of the
dynamical matrix. In the long-wavelength limit
their unretarded theory predicted the existence of
24 surface modes, apparently independent of the
number of layers in the slab. These 24 modes
were found to be of two distinct types. Twelve of
them were such that the amplitudes of the ionic dis-
placements decay gradually away from the surfaces
of the slab and the other twelve were such that this
decay of ionic displacements was much more rapid
(approximately within a lattice constant). The
modes of the former type were found to arise from
the long-range Coulomb forces and correspond in
behavior to those found by Fuchs and Kliewer.*
The modes of the latter type are related to the
short-range forces acting on ions on or near the
surfaces. For ga =1 the number of modes was
found to drop to 12 since the two types apparently
merge as the former type becomes strongly local-
ized at the surfaces. They state that their theory
provides a microscopic basis for the validity of the
dielectric-constant formalism used by Fuchs and
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Kliewer in their treatment of the surface modes
arising from the long-range Coulomb forces both
with and without retardation.

In this paper we examine the normal modes of
vibration of an ionic-crystal slab to try to resolve
some of the discrepancies noted between the results
of the preceding theories. We first develop a theory
from which the normal modes of the slab may be
calculated including the effects of retardation. If
we then let the speed of light ¢ become infinite, the
theory yields the unretarded normal modes. We
calculate the unretarded modes of a seven-layer
slab and discuss our results in relation to those
previously mentioned.

We also develop a theory which allows us to cal-
culate the infrared optical properties of an ionic-
crystal slab from its unretarded normal-mode fre-
quencies and eigenvectors. We calculate the trans-
mittance, reflectance, and absorptance of a 15-layer
slab with the radiation incident at an angle of 75°.
The calculations are made for both P and S polariza-
tions of the incident electric field. The results are
discussed and compared with the results of two dif-
ferent studies by Tong and Maradudin® and Berre-

man.”’

II. LATTICE DYNAMICS OF AN IONIC-CRYSTAL SLAB

We consider a diatomic ionic-crystal slab of finite
thickness oriented normal to the z axis and extend-
ing to infinity in the x and y directions. We assume
the crystal structure to be of the NaCl type and the
z axis to be along the [001] direction so that the slab
is made up of N planes of point ions having masses
m; and charges e; where j=1, 2 denotes the two
types of ions. Each plane of ions is then considered
as a perfect two-dimensional lattice divided up into
a network of unit cells, each having the same ar-
rangement of ions. The sides of a unit cell are de-
termined by two basis vectors 51 and 52 and the area
of a unit cellis 12;Xa,l . The points at the corners
of the unit cells form a Bravais lattice defined by
the general lattice vectors 1=1,3; +1,35, where /;and
1, are integers which may be positive, negative, or
zero. The equilibrium positions of the ions within
a unit cell are specified by the vectors §,, measured
from the reference corner of the cell. We approxi-
mate the equilibrium positions of the ions to be the
same as in an infinite crystal.®

In order to simplify the derivation of the dynami-
cal matrix in the following sections we choose the
origin of coordinates at the equilibrium site of a
positive ion on one of the surface layers of the slab
as shown in Fig. 1. The x and y axes are chosen
along (110) directions, and the planes of ions are
seen to intersect the z axis at I,=157, where I
=0,1, 2,..., N-1and », is the nearest-neighbor
distance. The two-dimensional unit cell is shown
in Fig. 2 with a,=ax and a,=a) where a= V27,
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and ¥ and § are unit vectors inthe x and y directions.
In all planes for which /5 is zero or an even integer,
the lattice site on the z axis is occupied by a posi-
tive ion; in those planes for which /; is an odd inte-
ger, this site is occupied by a negative ion. We
therefore adopt the following conventions concerning
the label j and the vectors 5,. The value j=1 will
denote a positive ion, and j =2 will denote a negative
ion. However, the vectors §, must be chosen as
$1=0, S,=3a(x +3) for planes with I, zero or an even
integer, and as s, =3a(x +), S,=0 for planes with
I3 an odd integerin order to maintain a common
origin for the lattice vectors Tinall planes.

When the ions are displaced from their equilib-
rium positions we define u, ,(T, 15) to be the ath

‘Cartesian component of the displacement of the ion

of type j in the unit cell located by the two-dimen-
sional vector 1 in the plane labeled by /3. The vec-
tor locating ion j in unit cell of plane 5 is then

t(T, 13, j) =137z + T+8;+u,(T, y)
and in equilibrium
v(1, 15, 7)=1%T, 15, j) =137z + 1+5; .
We now write the equations of motion of the lattice
simply as

myiiay(T, 1) =F3,(1, 1)+ F §(, 1) . (2.1)

The right-hand side of these equations represents
the ath component of the total force acting on the
ion labeled by j, T, and 73 when the ions are dis-
placed from their equilibrium positions. The first
term Fi,('l’, l3) represents that part of the total
force arising from the short-range interactions be -

FIG. 1. Coordinate system used in calculation of
normal modes. Solid circles represent positive ions.
Empty circles represent negative ions.
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FIG. 2. Two-dimensional unit cell of the plane lattice.

tween neighboring ions and FS,(T, 7,) represents the
electromagnetic forces.
In the harmonic approximation we assume that
these forces can be written in the form
PO a9=- 2 ey (1525157, 5"

’1
i3

Xu,gj'(-f,, l3’) . (2- 2)

We next write the displacements in the form

uuj(T, lg): w\;;;z(la)eia-fe-iwt , (2. 3)

i

where Zf is the two-dimensional wave vector in the
plane of the slab and is such that the displacements
satisfy periodic boundary conditions in the x and y
directions.

Using Egs. (2.2) and (2. 3) the equations of motion

of the lattice may then be written as

~ ol + 2 [DSe(a; Us, L5 4, 5)

B,i’ 1%
+D5a(q5 U3, 135 4, ) wey(13)=0,
(2, 4)
where
DS Ods Isy Lyg 4, 5 )= lmym)) R
x DGO, T 1y, L3 4, 300
1‘

(2.5)

Equation (2.4) leads to a 6N X 6N matrix whose ei-
genvalues w%, m=1, 2,..., 6N, are the squares of
the normal-mode frequencies of the slab. The ei-
genvectors give the pattern of ionic displacement
amplitudes across the slab.

L. MATRIX D$4(q; 15, 1337, /')

In this section we consider those short-range
repulsive forces arising from the overlap of the
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electron clouds of neighboring ions. Following"
Kellermann, ° we treat these forces as being deriv-
able from a central potential ®(») and include inter-
actions between nearest neighbors only.

We define two constants A and B by

_ 47 %
A= Zz— d72 rerg s (3.1)
p-rgde (3.2
e dr pery -2

All of the nonzero elements of DS are listed below:
For l3#13, j#5:

D(Q; Us, 135 5, 5V =D5(d; Ls, Las 4, §7)

2
_ e
" 4rimm; )P B(O1g 101 +01g,1300)
(3.3)
S (= . ez
Dela; I3, 135 4, 5 7)) =~ WA
X0y, +015,15.1) - (3.4)

For l;3=13, j+j":
D3G5 Uy, Is; 4, 5')=D5(G; s, Ls; 4, 57)

2

- e i3+ (85-8;0)

=— —5———7 (A+B)e
273(m ;m ;)72 ( )

X coszqeacoszgua , (3.5)

s/ - e?‘
D s U3, U35 4, )= - —5———i7%

ii-(i,-ﬁ,:)
172 Be
7 O(mjmj’)

X COS3¢,acoszqa , (3.6)
D(Q; 13, Lss G, 5 ') =D5(d; Lg, a5 4, 5 7)
e? ( id. (§;08;0)
= 5517z (A = B)e' G55
27om;my) Je
x sinz g.asinzgya . (3.7)

For I3=1,, j=j', and I not a surface layer:
DSa(Q; 1s, 135 ,7) =04p(e?/r3m;)(5A+B) . (3.8)
For Iy=13, j=j', and I, a surface layer:
DSAGs Uy, Lss G, §)=D5( 5 Ls, U5 js )
=(e®/rim;)zA+2B), (3.9)
DE(d; I, Us; 4, §)=(e¥/r3m)3A+B) .  (3.10)

IV. MATRIX DS5(q5 13, 13 7, )

We now turn our attention to the electromagnetic
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forces which act on the ions in the slab. We will
initially include the effects of retardation of the
Coulomb forces and will find that the DS4(q;1s, 15;
4, 7') depend upon the frequency of oscillation w of
the lattice, as well as the wave vector a Upon
letting the speed of light ¢ become infinite in these
expressions, they become independent of w and
represent the unretarded Coulomb forces.

We first consider a point ion of charge e execut-
ing simple harmonic motion of frequency w about
an equilibrium position r= Fo with amplitude U. This
ion will give rise to an electric field at the point r
given by!'®

J

FﬁJ(T, l3):el Ea(;(-f, l3; j))=e, Bzi', ej'uBJ(T,’ ltli)

17,14

2 32
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B(T, H)=e[(w¥/c?)u+(T-V)V]

x exp[i(ci)/cll ¥=¥gl] iet
[7 =7y |

(4.1)

In an ionic-crystal slab the electromagnetic force
acting on an ion at a site fixed by I, 7,, and §, is
simply the Lorentz force T=¢;(E +vxB/c), where
E and B are the electric and magnetic fields at the
location of the ion arising from the motion of all the
other ions in the slab, and v is the velocity of the
reference ion, The vXB term depends quadratically
upon the ionic displacements so, in the harmonic
approximation, we take

expli(w/c)Ir - (1’14, i)1] 4.2)

(O]
X Oy4p +
[? ab dx « x, 8

where the prime on the sum indicates the exclusion
of the point 1'=T, 73=1;, j'=j. We choose 1=0;
Egs. (4.2), (2.2), (2.3), and (2.5) then lead directly
to the expression

- eje;:
D¢ A f,oao sy i€j
aB(q’ I3, 135 7,7 ) (mjmj')irz
2 2 ¢ t(w/e)ir-1)
: 9 te .1
x lim [% 5 . »n'e R
Fdse3y 0 [ cZ 7T oy 0xg |47 IE-1' ’
*g19)% (4.3)

where the prime on this sum indicates that, for I ;
=1,, j' =j, we must exclude the point 1’ =0 from the
sum. Those elements of D for which  3=1, will
require special considerations, as we shall later
see.

The sums involved in Eq. (4.3) are slowly con-
vergent and must be transformed to more rapidly
convergent sums for practical numerical evaluation.
For the case l3#1;, we write

et(w/c)lt-ll

_?_*__eii'lzz Ao(z)el(a*«a)-; , (4-4)
1 lr=1] [
where
w/eNeil L L.
Aglz) = L TE et¥Or U042, - (4.5)
¢ Jeel1 i Ir =11

The vectors Garethe reciprocal-lattice vectors of
the two-dimensional lattice in the plane of the slab
and are defined by G=n,b; +n,b, where », and »n, are

|

- .. 2meje . —
DCy(q; 1g, 1% 4, ]')3-—‘”'1—L“W§ZJ

lim
ac(mj My 2

G F-8;-8;0 +(13-19)%]

] ,
! - - R -
integers and b, = (2n/a)x, b,=(21/a)y. Also, X is
the projection of r on the xy plane, a,is the area of
a unit cell of the plane lattice, and [, denotes in-
tegration over the area of a unit cell.

By converting the expression for A;(z) into an
integral over the entire xy plane, we find

bt i(w/c)(tawz)l/z
AG(Z)=glf e
a, o

T I(|d+Glppdp ,

(4.6)
where J; is the Bessel function of order zero. This
integral depends upon the relative magnitudes of
lq+Gland w/c.!! For |q+Gl>w/c:

== T T T
|I‘—I’(T,l3,] ) F:?(i.ls,l)

Ag(2)=2me7%6' " /(a a;) , (4.7a)
where

ag= [(§+8)% - w?/c?]'2 .
For 1q+Gl<w/c:

Ag(z)=i 2me*e'? fa, Bp), (4.7b)

where

Bo=[w?/c®~ |q+G[?]'/2.
For values of a in the first Brillouin zone, we note
that if ¢ > w/c then all A,(z) will be given by Eq.
(4.7a). However, if g <w/c then Ag_o(z) will be
given by Eq. (4.7b) and all other A;(z) will be given
by Eq. (4.7a). Thus, if ¢ >w/c and 13#1;, Egs.
(4.3), (4.4), (4.6), and (4.7a) give

2 2 ~aglzl -
w 4 e 1(3+3)e%
~3 O4p + ] e . 4.8
[C o 9x 4 9xp Qg ( )

The explicit expressions for these elements are given below.
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For a, B=x,y:

DS q; Us, U35 5, §7)= —'-Zn—g‘Le"—'—m' % [(Wc?)64s = (g +G)alg+G)s1E

aglm;m;)
For a=x, y:

DSA(Q; I3, 135 4, §')=DENQ; 13, 13 4, §7)

!
=iﬂﬂﬂ’_7m_ %3:_;_;)_] T3 (g +G)y o061 5715170 1@ Gy-iyo)
3 ~t3l G

a,_.(m, m, ’

For a=B=2z:

- ., 2meje ;. ' -
DEA&; 1s, U3 4, J')=———’—’ﬁ-§ |q+3|2

aclmym;. )2

x e-aGlla-lsh‘o ei(hﬁ)-(ﬁ,-ﬁ,v) . (4. 11)
A
To obtain the corresponding expressions for g <w/c,
one simply replaces (g% -w?/c?)'2 by —i(w?/c?
—¢%)}2 in the G=0 term of each of the above sums.
We now turn our attention to the case l3.=75 and
first consider j'#j. The preceding expressions,
valid for I;#1,, contain sums which diverge for
l3=13. In this case we modify our treatment by
using one-dimensional rather than two-dimensional
Fourier transformations. We write

RICTOIS 1 i(ay+G ) ,dayl
eq =EEBGx(y_ly)e A+ x"equ,

ly Gy
(4.12)

i Ix-1l

where

i

e{(u/c)lx-ll

T Ix-1

y Gx

JONES AND R. FUCHS

¢ it (2/a)EZKo([(q,+G,)2—w2/ca]”2ly _lyI) ot @ty piayly
1y G

4
~ag l1g-1%l
o0 W i@l Grdy | (4.9)
G
(4.10)

e HaxsC % gy

(4.13)

g, and g, are the x and y components of E, and [,
and [, are the x and y components of 1, respective-
ly. This integral depends upon the relative magni-
tudes of | ¢, +G,| and w/c. !

For lg,+G,l >w/c:

Be,(y =1,)= (2/a) K([(g,+ G)* - 0?¥/c?]" 2|y -1,]) .
(4.14a)

1(° euw/c)[xz;(y-t,)zl‘/"’
B (y -1)=~= 3
6 Y ~HT G ). I -1,

For lg,+G,l<w/c:
BGx(y _ly) = i(ﬂ/a)Hél)([wa/ca - (qx+Gx)2]1/2|y _lyl ).
(4.14b)

Here K, is the modified Bessel function of order
zero, and H él) is the Hankel function of the first
kind of order zero.

Considering the case |g,|>w/c we combine Egs.
(4.12) and (4.14a) to obtain

(4.15)

Using Eqs. (4.3) and (4.15) we may obtain, for example,

- . . 2 ’ -S3t
Dxcx(q; l3: l3; Js 7 I): - ( 248 )172 Z) E [wz/ca-(qx+Gx)2] e‘(q”’cx)(ij 5%
avmmye 1y G,

X K [(ge+G)% = w¥c? 2|1y +550y =55]) '%Ps .

(4.16)

In treating the case I3=13 and j'=j, we again use the transformation defined by Eqs. (4.12) through (4. 15)

for lg,|>w/c to obtain, for example,

- oL, 1
DSAd; U, 1s; §, §)=

X Ko([(ge + G2 - w¥/c2 2|1,]) €' %'y - B,(q, ) .

Here 5.0, 0; I3, I j, j) represents the force
which acts on the reference ion of type j at 1=0 in
layer 1, if it is displaced from equilibrium while all
other ions remain fixed. The prime on the sum
over l, here denotes the exclusion of those terms
for which Z,=0. The term - B,(q, j) is then the con-
tribution to DS,(q; I3, Is; 7, j) from all ions in the
line 7, = 0 except the reference ion at 7,=0.

L 22
— 82,0, 0; 13, U35 j, §) — —2L 2" 2 [w¥e? = (g, +Gy)?]
mj am, ly ¢

%

(4.17)

I
Excluding retardation, ®5(0, 0; 4, 15; 4, 7) would
be given by

857(0, 0; Ig, 15 4, 9)
== 2" &850, 1", I, U 4,5") -

11540
13 (4.18)

The superscript U indicates that these are matrix
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elements of the unretarded Coulomb interactions.

In order to include retardation we must use the fact
that the reference ion of charge ¢; not only experi-
ences this force due to the electrostatic field of all
the other fixed ions but also radiates power due to
its acceleration as it oscillates about its equilibrium
position. This is taken into account by introducing
a frequency-dependent effective force acting on the
reference ion given bym

e d°u;(0, 1)
3

- 2
f= 3¢ at® ’

which leads us to

8S,(0, 0; 13, Ug; j, 1) =255(0, 05 13, 1s; j, 4)

-2ie203/c®, (4.19)

for a=x, y, and z.
An expression for B,(q, j) is found by expanding
Eq. (4.8) for I3=lgand I,=0. This yields

RIS
Ly

1 w 1 ) :
X —_— ) — axl
<|le2 te g )e

where the primed sum excludes /,=0.

Expressions for various elements of D with 7,
=13 are given in Appendix A assuming lg,|>w/c
where y is either x or y depending upon the partic-
ular element of D°. One can easily obtain the cor-
responding expressions for these matrix elements
if the inequality is reversed (lg,| <w/c) by using
Eq. (4.14D).

It can be shown that the matrix D€ is Hermitian
only for ¢ >w/c. Thus the eigenvalues of the matrix
D%+ D° will necessarily be real only for the non-
radiative region ¢ >uyc. (The matrix D° is obvious-
ly Hermitian for all q.)

The elements of D excluding retardation are
listed in Appendix B.

V. GENERAL THEORY OF INFRARED OPTICAL
PROPERTIES

We now consider the response of an ionic-crystal
slab to an externally applied electromagnetic field.
In particular, we will develop a theory from which
the transmittance, reflectance, and absorptance of
the slab may be computed as a function of the fre-
quency of the applied field at any angle of incidence.

With an externally applied force, the equations of
motion of the lattice are obtained by adding the ap-
plied force to the right-hand side of Eq. (2.1). This
gives

- 2 2[
Bx(q’ .7)= ¢ Z)
mj 1,

(4. 20)

myiig (1, 1) =F5,(1, 15) + FS,; (T, 13) + F2,;(T, 1)

(5.1)
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where F2,(1, 1;) is the ath component of the applied
force acting on the ion labeled by the j, I, and ;.
Development of a theory of the optical properties of
the slab requires further consideration of the term
Fﬁ ,(T, 13) which arises from the electromagnetic
field within the slab. We separate this field into
two parts—the long-wavelength macroscopic field
which occurs in Maxwell’s equations and the local
field, which is a sum of all short-wavelength com-
ponents. The total macroscopic field can then be
obtained as a superposition of this induced macro-
scopic field and the applied field. This treatment
will give expressions for the total field both within
the slab and in regions away from the slab. . The
optical properties will then follow easily.

We first examine the components of DSB(E; I3, I3
4, i') as given in Sec. 1V, keeping in mind that in
treating the infrared optical properties of the slab
we will have ¢ = w/c ~10° cm™, while the smallest
nonzero reciprocal-lattice vectors have a magnitude
of 21/a=~10°% cm™.

In this long-wavelength region all elements of the
matrix D° can be written in the form

DSo(Q; Lay 133 4, ') =Dle( Q5 Usy 135 4, 5)
+D25(l3, lili;-j’ ],) ’

where the superscripts M and L denote those parts
of D¢ arising from the macroscopic and local fields,
respectively. For I§#l,, the D¥ are simply the G
=0 terms of the sums appearmg in the expressions
for D° and the remaining G+#0 terms make up D* .2
Because of the special treatment required in the
case l3=1,, the above separation of D° is not as
straightforward as in the case I3#1;. The result of
this separation is that the approximate expressions
for D are the same as the corresponding elements
for 13#1, with I, — 15 taken to be zero.

The induced macroscopic and local electric field
at an ion of type j in layer I; are given by

EME (14, §) =~ (Vm, /e;)

(5.2)

X 23 DTN Ly, U3 d, 3 weye(Ls) .
B,i',1%
(5.3)

In the limit of a uniformly polarized infinite crys-
tal, evaluation of the local field yields E%(I,, 7)

= %me, where P is the polarization of the crystal.
This is the usual Lorentz local field and is indepen-
dent of the ion type j.

In order to determine the optical properties of
the slab, we assume the external force to be due to
an electromagnetic plane wave incident on the slab
from the negative-z side. If we let K be the wave
vector of this wave, then its projection parallel to
the slab is given by K= (w/c)sin6k, where % is a
unit vector in the plane of the slab and 6 is the angle
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of incidence; its z component is K,= (w/c) cosf. We
therefore write

ng(-i, la) - ej E:(ls)e ike (l+§j)
and

ES(l)=E%e'* s,

(5.4)

(5.5)

If we make a normal coordinate expansion of the
ionic displacements in terms of the eigenvectors
of the matrix D3(d; Ls, Ls; j, §') +Daslls, 155 4,5 "),
we may then solve the equation of motion (5. 1) for
the displacements as

eil 6’8'3*1(1.;, l;)(z!(l-{., l3)

wy (Ig)= 27
w (Z3) g;,._\/m,, w2 - w?
m

x[E¥(15) +E5(13)], (5.6)

where we have dropped the index jin E¥ since it is
independent of j in the long-wavelength region. The
index m labels the normal modes of the matrix DS
+D¥; the €™ are its eigenvectors and the w2 are its
eigenvalues.

Equation (5. 6) relates the ionic displacements to
the total macroscopic field, EZ=E¥ +£°, within the
crystal. Inserting this equation into Eq. (5.3) yields
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4
where
M 13, I3)= - jsz DE(k; 1y, 13, 4, §)
AR
13'm
N (K, lag)e;',:z(k, 15) . 5.8

Wh—w

If we now add E£(l;) to both sides of Eq. (5.7), we
obtain

2 [8asdiyry = Maslls, IEF0)=ES0) . (5.9)
13

For a slab of N layers of ions, this is a set of 3N
linear inhomogeneous equations which may be solved
numerically for the amplitude of the total macro-
scopic field at each layer of the slab in terms of the
applied field. Having solved for the total macro-
scopic field within the slab, we can now calculate
the field in regions away from the slab directly from
Eq. (5.7). We simply replace I37, by z to obtain
EM(z)= BZ)' M o4lz, IDET@3) , (5.10)
13

which holds for all values of z.
To examine this more closely we write out Eq.
(5.10) explicitly as

1 Ke 1) |

expli(w?/c? - |K| 22|z —13' vo| 1ESG3),  (5.11)

tracing this term through the steps leading to Eq.
(5.9), it is easily seen that this is equivalent to re-
placing the denominator w2 - w? in Eq. (5.8) by
-y,

In order to calculate the transmittance, reflec-
tance, and absorptance of the slab we assume the
applied field to be traveling in the positive-z direc-
tion throughout all space and simply use the principle

Eql)= 2 Mulls, 1DEFGY), 6.7)
243
1
2mi ejey w?
M)=- ), 2T s o [ S -
Ea(z) 3:1'3 B 157, (m,m,:)l [cz 0oy Ka(Z
T, m
o B (K, 19)eys (K, 15')
2 2
we —w
|
where
- V4 '—l O)z > 1/2
K(z"lt)=l:km ky, T;:T:T(?Z‘"Iklz> ]‘
(5.12)
Since | Kl 2= (w?/c?)sin%, we have
(W¥c? - |K|2)}2= (w/c) cosb =K, . (5.13)

which is the component of the wave vector of the
applied field normal to the slab. Thus, by inspection
of Eq. (5.11), the induced macroscopic field within
the slab is a sum of fields traveling in both the
positive- and negative-z directions, while in regions
removed from the slab, it is a field traveling away
from the slab with wave vector K= (w/c)K.

Intrinsic damping in the crystal may be put into
this theory in a phenomeno_logical way by introducing
a damping force —m,¥it,;(1, I5) on the right-hand
side of the equation of motion of the lattice (3.1),
where y is the damping constant of the lattice. By

of superposition to calculate the transmitted and
reflected fields. The transmitted field is then

EZ(z+)=E%(z ) +E%(z +) (5.14)

and the reflected field is simply
E§(z-)=Eq(z-),

where z + and z — denote the regions of space away
from the slab in the positive- and negative-z direc-
tions, respectively.

The optical properties of the slab follow directly
from the above expressions for the transmitted and
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reflected fields. Expressions for the transmittance,
reflectance, and absorptance for the cases of P and
S polarizations of the incident field will be derived
in the Secs. VI and VII.

VI. P POLARIZATION

In the case of P polarization the incident electric
field vector is polarized in the plane of incidence.
We choose the xz plane as the plane of incidence so
that K, = (w/c) sind, K,=0, and K,=(w/c) cosé where
0 is the angle of incidence measured from the normal
to the slab.

We first solve Eq. (5.9) for the amplitude of the
total macroscopic field at each layer of the slab.
We further approximate the eigenvectors e:,",(l?, 1)
appearing in the expression for M (I, 13) by their
k=0 values since we are working in the infrared re-
gion.'® We then have no coupling of the y components
of the ionic displacements and fields with their x and
z components because the k=0 eigenvectors are
such that

Moy(s, 19)=My, (s, 13)=Mp(s, 13)=M, (s, 135)=0 .
(6.1)

Equation (5.9) thus separates into a set of 2N
linear inhomogeneous equations for a=x, z and a
set of N linear homogeneous equations for o=y since
E,=0. The N homogeneous equations simply give
the y-polarized normal modes of the slab, which
have no effect on the P polarization optical proper-
ties. The remaining 2N inhomogeneous equations
may then be solved numerically for EZ(l;) and EZ(l,)
which then permit calculation of the transmitted and
reflected fields from Egs. (5.10), (5.14), and
(5.15).

We choose the applied electric field to be of unit
magnitude such that

e_ 1K oFewt) e_
Ej=—cosfe B E5=0,

6.2)
E®=sing " Kot |
By inspection of Eq. (5.10) with the M (2, I3) writ-
ten out explicitly we can see that the total field on
the transmission side of the slab is such that

ET(z+)=—-tanbET(z +) , (6.3)
and the reflected field is such that
E®(z -)=tan0 EF(z -) . (6.4)

Thus one needs only to calculate ET(z +) and EX(z-)
directly from Eq. (5.10).
The transmittance of the slab is defined as

T=|87|/|S°| , (6.5)
where ST and S° are the time-averaged Poynting
vectors of the transmitted and incident fields, re-
spectively, and are given by
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ST=(c/8m) Re[ ET*(z +)xHT(z +)] ,
Se=(c/8m) Re(E**x 1°) .

Here H is the magnetic field and is determined from
the Maxwell equation

(6.6)

iKxE=i(w/c)H . (6.7)
Calculation of S” and §° from Eq. (6.6) gives
T=ET*(z +)ET(2+)/cos?0 . (6.8)

The reflectance of the slab is calculated in a
similar fashion and is found to be

R=EF*(z-)ER(z -)/cos% . (6.9)
The absorptance is then calculated from
A=1-T-R. (6.10)

VII. S POLARIZATION

In the case of S polarization the incident electric
field vector is polarized normal to the plane of in-
cidence. We again choose an angle of incidence 6
in the xz plane as in the case of P polarization.
Here we have

E¢=0, ES=¢'®iut)  pe_g (7.1)

We again approximate the normal-mode eigen-
vectors appearing in the M4(l5, I3) by their K=0
values so that in Eq. (5.9) the y motion separates
from the xz motion as a set of N linear inhomo-
geneous equations which may be solved for EJ (15).
We then calculate the transmitted and reflected
fields from Egs. (5.10), (5.14), and (5.15) as be-
fore.

The transmittance, reflectance, and absorptance
in this case are easily found to be given by

T=EJ*(z+)El(z+), (7.2)
R=EF*(z -)ER(z-), (7.3)
A=1-T-R. (7.4)

VIII. LOCAL APPROXIMATION

The preceding treatment of the infrared optical
properties of the slab is local in the plane of the
slab in the sense that the fields and ionic displace-
ments are assumed to be essentially uniform over
any given layer of ions in the slab. This assumption
was used in replacing the eigenvectors €7,(K, I,) by
their K=0 values and in replacing all ¢*8; factors
by unity. However, the treatment is nonlocal in
the direction normal to the slab in that no assump-
tions were made concerning the variation of the
fields and ionic displacements from one layer of
ions to the next. This is evident from the sums
over layers, I3, maintained throughout the theory.

This type of treatment seems reasonable in view
of the fact that the externally applied field has a
long wavelength and the component parallel to the
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slab of the wave vector of the macroscopic field in-
duced within the slab must be the same as that of
the applied field. Any rapid variations in the total
field within the slab must then take place in the di-
rection normal to the slab; i.e., if we think of the
dispersion relation for light in an infinite medium,
1K 12= e(w)w?/c?, as applying to the slab, then any
change in | K| resulting from a change in €(w) near
a resonance must show up as a change in the com-
ponent of K normal to the slab since the parallel
component of K is fixed at some small value by con-
tinuity across the surface of the slab.

We can modify our preceding treatment to obtain
an approximation which is local in the direction
normal to the slab as well as in the plane of the slab
by assuming that the fields and ionic displacements
are essentially uniform across the slab. The pro-
cedure for calculating the macroscopic fields and
thus the optical properties is found to be the same
as in the nonlocal case except that we replace
M o5(l5, 15), as given by Eq. (5.8), by

2mi v,
ME(B)C(ZS: Z:;): ((4)2/02— lk=12)172

x 20 [(w¥c?)b4s K (15 ~13) K, (15~ 13)]

; 2 = 121/2 ‘

x giw?/e®1E1%) l1gtslroy (W), (8.1)
where
€jlje
Xap(w)= ———
o Na;7q j,i%,15, (mym;e)
15,m

9 sg',,(o,2 lé)e,’é'}(o, 1) 8.2)

Wiy — W

is the local electric susceptibility of the slab.

The structure of M59€(l5, 13) is such that the
computation of the optical properties in the local
case is much simpler and less time consuming than
in the nonlocal case.

We should emphasize that neither the procedure
used in this local approximation nor that of the pre-
ceding nonlocal theory is the same as that used in
classical electricity and magnetism. The major
difference is that we assume the applied field to
exist throughout all space and calculate the trans-
mitted, reflected and incident fields by appropriate
superpositions of the applied and induced fields in
the regions of space on either side of the slab while,
in a classical calculation, one normally assumes
the existence of different fields in the three regions
of space determined by the region occupied by the
slab, the reflection side of the slab and the trans-
mission side of the slab and then calculates the
amplitudes of these fields from appropriate bound-
ary conditions at the surfaces of the slab.
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IX. NORMAL MODES OF VIBRATION

The unretarded normal modes of vibration of a
NaCl crystal slab of seven layers of ions have been
computed from the eigenvalue equation (2.4) using
the dynamical matrix elements presented in Appen-
dix B. The values of the physical constants used in
the calculation are the same as those given by Tong
and Maradudin.® They are

m.(Na)=38.16X102*g, m_(Cl)=58.85x10"2 g,

7,=2.814x10"% cm , e=4.8x10"0 esu ,

A=9.288 , =-1.165 .

The normal-mode eigenfrequencies and eigenvectors
were calculated for ¢, =0 with ¢, ranging over var-
ious values from g, =0 to the first zone boundary
where q,=1/a.

For ¢,=0 the matrix D3z +DS; is such that there
is no coupling of the y components of the ionic dis-
placements with the x and z components. Thus, the
y-polarized normal modes are obtained by diagonal-
izing the 14X14 matrix D§, +DS,. The remaining
28X 28 matrix, D3g+DS, with @, B=x, z, yields
those normal modes for which the ionic displace-
ments lie in the xz plane. Since the most interesting
behavior occurs in the xz-polarized modes we shall
discuss them in some detail first and then give a
more brief discussion of the y-polarized modes.

For the sake of completeness, all 28 of the xz-
polarized modes of a seven-layer slab are shown in
Fig. 3. In this and all following plots of normal
modes, the frequency is plotted versus the dimen-
sionless variable @=g,a/2r, @=0.5 corresponding
to the zone boundary. Due to the reflection sym-
metry of the slab, the eigenvectors of all normal
modes have definite parities with respect to the
center layer of the slab. Letting I; and [; denote
atom_ic planes equidistant from the central plane
(l3+13=N-1), an even-parity mode is one whose
ionic displacements satisfy

wxj(‘i!i):wxj(ls) ) wyj(ia):wyj(ls) ’ w;j(i3)= "ng(ls) ’
(9.1)

and an odd-parity mode is one whose ionic displace-
ments satisfy

wxj(ifi): _wxi(lfi) ’ wyj(73)= —wyj(lii) ’ w:j(zs)'_“w:j(ls) .
(9.2)

The complicated behavior of the normal modes of
Fig. 3 is due to the interactions of modes whose
eigenvectors are of like parity. As the frequencies
of two such modes approach one another they do not
cross but tend to “repel” each other and their eigen-
vectors exchange character. Although this effect

is not easily seen in Fig. 3 because of the large
number of modes drawn in this figure, it is apparent
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* FIG. 3. Dispersion relations
for xz-polarized modes of a 7-
layer NaCl slab.
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in Fig. 5, which we shall discuss shortly.

Of the 28 normal modes shown in Fig. 3, seven
are longitudinal optical (LO), seven are transverse
optical (TO), seven are longitudinal acoustical (LA),
and seven are transverse acoustical (TA) modes.'*
At @=0, the seven uppermost modes in the figure
are the LO modes but, other than these, one cannot
easily point out the other groups of modes because
the LA modes cover such a wide range of frequen-
cies that they are mixed in with the TA and TO
modes.

In Fig. 4 we have plotted the frequencies of the
xz-polarized optical modes for @ ranging from 0 to
0.10. The upper seven modes are longitudinal and
the lower seven are transverse modes. The two
transverse modes drawn in dashed lines are optical
surface modes.

Looking at the LO modes at =0 in Fig. 4, the
highest-frequency mode is an odd-parity mode, the
second highest is even parity, and they continue to
alternate in parity down to the lowest-frequency
longitudinal mode, which is of odd parity. The

transverse modes follow the same alternating pat-
tern at @ =0 with the highest being of even parity
and the two nearly degenerate surface modes being
of opposite parities.

All of the LO modes, with one exception to be
discussed below, are bulk modes, the uppermost
one having a frequency w=5.789%x10'® sec™ at @ =0.
The uppermost mode corresponds roughly to the g
=0 LO mode of an infinite NaCl crystal of point ions
having frequency

2 1/2
w=wLo=[§ey—g(% +m—1)(A+ZB+ %):l

=5.856x10" gec™t . (9.3)

Of the five TO bulk modes, the lowermost one'® has
a frequency w=2.512%x10'® sec™! at Q=0 and cor-
responds roughly to g=0 TO mode of an infinite
crystal for which

o [ety1 1 _477) 17z:
w—wro—[m<m++m )<A+2B— 3 ]
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=2.488x10" sec . (9.4
Of the two TO surface modes, the one whose
frequency increases rapidly as @ increases from
zero is of even parity and appears to correspond to
the low-frequency surface mode found by Fuchs and
Kliewer.! However, unlike their result, this sur-
face mode remains localized at the surface in the
q- 0 limit as does the odd-parity surface mode for
which they found no corresponding mode. For sim-
plicity, the even-parity surface mode has been
shown crossing all of the TO bulk modes above it
in the region near @=0 in Fig. 4. The true behav-
ior of these modes is as shown in Fig. 5, which is
an expanded drawing of that small region of Fig. 4.
Only the even-parity TO modes are shown in Fig.
5 since the odd-parity modes are unaffected in this
region. At @=0 the lowest-frequency mode
(w=2.418x10" sec™) shown is localized at the sur-
faces of the slab; in the region 0.000550<0.005
none of the modes shown have a definite surfacelike
character because of the interactions occurring in
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this region. Beyond @ = 0. 005 the highest-frequency
mode begins to regain this surfacelike character

as its frequency increases away from the other
modes and the three remaining modes are then bulk
modes, the eigenvectors of each now having the
character of the @ =0 eigenvector of the mode which
was directly above it at =0.

In view of this behavior of the even-parity TO
surface mode, we now return to Fig. 4 and examine
the LO modes more closely, keeping in mind that
Fuchs and Kliewer also found an upper surface mode
in their calculations. Concentrating on just the odd-
parity LO modes, we see that there are interactions
between these modes similar to those seen in the
TO modes. Since the LO modes cover a greater
range of frequencies than do the TO modes, these
interactions are necessarily spread over a greater
frequency and wave vector than are the TO mode
interactions. Yet there is a definite indication in
Fig. 4 that the uppermost mode at @ =0(w ~wyo) is
trying to make its way down in frequency through
the other LO modes as @ increases. The range of

FIG. 4. Dispersion relations
for xz-polarized optical modes.
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FIG. 5. Dispersion relations for even-parity xz-polarized
TO modes.

frequencies of the LO modes is just too great to
allow this mode to emerge well below the frequency
of the lowest LO mode; nevertheless, in the range
0.13@50.2, the mode tends to assume a surface-
like character as predicted by Fuchs and Kliewer.

In order to demonstrate this effect more clearly,
the normal modes have been recalculated with the
electronic charge occurring in the Coulomb matrix
elements multiplied by a factor of 1.26. This was
done to provide a larger gap in frequency between
the LO and TO modes so that the LO surface mode
might be able to emerge below the other LO modes.
The odd-parity 1O modes and the even-parity TO
surface mode resulting from this calculation are
shown in Fig. 6 as solid lines. The two dashed
lines in this figure are the two surface modes cal-
culated from the theory of Fuchs and Kliewer with
e replaced by 1. 26¢ and

2 1/2
e 1 1
wo= [m(;’l—:+ ;;) (A +23)j,

=3.944x10" sec™! . (9.5)

The lowest-frequency LO mode in the figure begins
to become localized at the surfaces approximately
at @ =0.04 and is definitely a surface mode at @
=0.10. The figure shows good qualitative agree-
ment with the theory of Fuchs and Kliewer.

Also, in order to investigate the behavior of the
optical surface modes at @ =0 more closely, the
normal modes of the slab were calculated with those
matrix elements representing the forces acting on
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the surface ions being replaced by the values of
those for the ions in the bulk of the crystal. By so
neglecting the changes in the forces acting on the
surface ions, the present theory more closely par-
allels that of Fuchs and Kliewer! in the long-wave-
length region, but the two theories are still not
completely equivalent. It was found that the depen-
dence of the normal-mode frequencies on @ was
changed only slightly but there were no modes lo-
calized at the surface at @ =0. This agrees with
the results of Fuchs and Kliewer. The lowest-
frequency TO mode at @ =0 is of even parity and
occurs at w = 2.496Xx 102 sec™!, very near w=wro.
At larger values of @, this mode appears above the
other TO modes and is localized at the surfaces as
in the case where the proper surface matrix ele-
ments are used. The lowest-frequency odd-parity
TO mode at @=0 occurs at w=2.525X10' sec™;
its frequency decreases slightly with increasing @
out to @ =0.10 and it does become localized at the
surfaces of the slab. This behavior of the odd-
parity mode does not occur in the theory of Fuchs
and Kliewer.

A calculation of the xz-polarized optical modes
was also made for a 13-layer slab for values of @
ranging from 0 to 0.05 in steps of 0.01. The odd-
parity LO modes and the even-parity TO surface
mode resulting from this calculation are shown in
Fig. 7. The behavior of these modes is similar to
that of the modes of a seven-layer slab except that
the TO surface mode is seen to rise to its maximum
frequency more rapidly with increasing . This
effect also agrees with the theory of Fuchs and
Kliewer.! In this case the upper LO mode occurs
at w =5.837x10" sec™ at @ =0 which is to be com-
pared to w;o="5.856%x10" sec! and the lower TO
bulk mode occurs at w=2.492x10'® sec! at @ =0
which is to be compared to wr = 2. 487X 10" sec™!.
Thus the @ =0 frequencies of these modes are seen
to approach wy,o and wrg as the slab thickness in-
creases. Both TO surface modes occur at w
=2.419%10'® sec™ at @ =0, a negligible change from
the seven-layer slab.

When the slab thickness increases from 7 to 13
layers, there is a qualitative change in the lowest
even-parity TO bulk mode. This mode, for seven
layers, is the lowest solid line in Fig. 4, or the
lowest line in Fig. 5 to the right of the crossing
region (@ 20.003); it is not shown in Fig. 7 for 13
layers. The mode is a bulk mode for the thinnest
slab, but gradually changes to a surface mode as
the thickness increases.

The change occurs in the following way. Let us
consider the x-displacement amplitudes of a given
atom type as a continuous function of distance across
the slab, and examine where the nodes of the dis-
placement amplitude are located. (For small @, the
displacement amplitudes for the xz-polarized TO
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FIG. 6. Dispersion relations
for odd-parity LO modes and
the even-parity TO surface
mode with e replaced by 1. 26e.
Dashed lines are surface modes
calculated from theory of Fuchs
and Kliewer (see Ref. 1).
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modes are very nearly in the x direction; they are
exactly in the x direction at @ =0.) Referring to
Fig. 5, where only the even-parity modes are
shown, the four modes at @ =0, in order of increas-
ing frequency, have 0, 2, 4, and 6 nodes, whereas
at @ =0.005 they have 2, 4, 6, and 0 nodes, again
in order of increasing frequency. At @=0.005, the
mode of interest, with two nodes, has many charac-
teristics of a bulk mode: The nodes are about one
atomic layer from the surfaces, and the displace-
ment amplitude is approximately a sinusoidal func-
tion of distance across the slab. However, the
amplitude is higher at the surfaces than at the cen-
ter by about 30%, so the mode also has some char-
acteristics of a surface mode. As the slab thick-
ness increases, the two nodal points move apart,

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

o.i10

remaining at roughly the same distance from the
surfaces. Moreover, the amplitude remains large
at the surfaces but becomes smaller between the
nodes, so that for 13 layers, the surface amplitude
is about three times the central amplitude. For a
very thick slab, finally, the two nodes are still near
the surfaces, the central amplitude is exceedingly
small, and the mode becomes very nearly degener-
ate with the odd-parity surface mode having a single
node at the center of the slab (lower dashed line in
Fig. 4). This behavior with increasing slab thick-
ness is consistent with the requirement that the
mode be orthogonal to the nodeless TO surface mode
(upper dashed line in Fig. 4), which has essentially
a constant amplitude across the slab just after
emerging from the region near @ =0 where it inter-
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acts with the bulk modes.

It is also of interest to inquire more closely about
the fate of the low-frequency surface mode of Fuchs
and Kliewer, which we shall denote as the “FK
mode, ” in the @ =0 limit. We stated that the even-
parity TO surface mode at @ =0 appears to corre-
spond to the FK mode; this is also implied in Fig.
4, where the FK mode (upper dashed line) has been
drawn so that at @ =0 it goes to the frequency of the
even-parity TO surface mode. However, it will be
seen below that this question cannot be answered
unambiguously.

The FK mode actually can be identified only where
its frequency is higher than that of the TO bulk
modes; it is an even-parity nodeless mode with a
displacement amplitude which becomes uniform
across the slab as @ decreases. When @ becomes
so small that the FK mode attempts to cross the
even-parity bulk modes, it loses its identity because
of interactions with these modes. The problem is,
then, to decide what characteristic of the FK mode

is propagated through the bulk-mode region. This
is where the ambiguity arises.

One might regard the nodeless character of the
FK mode as its significant feature. This nodeless
character is passed from one mode to the next in
the region of interaction in such a way that a given
bulk mode tends to be nodeless where its slope is
greatest, until finally at @ =0 the lowest TO surface
mode is nodeless. Alternatively, one might examine
how the slope dw/dQ of a mode in the interaction
region compares with that of the FK mode. The
calculation for seven layers, shown in detail in Fig.
5, indicates that both the even-parity TO surface
mode and the lowest even-parity TO bulk mode
(i.e., the lowest and next-to-lowest lines in Fig. 5)
have nonvanishing slopes at @ =0. The slope of the
surface mode is greater than that of the bulk mode,
and also agrees more closely with the slope of the
FK mode. By both of these criteria one would con-
clude that the FK mode becomes the TO surface
mode at @ =0. A third procedure might be to make
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a linear extrapolation of the FK mode to see what'
frequency it goes to at @ =0. Figure 5 shows that
at @ =0 it goes to the frequency of the lowest bulk
mode rather than the surface mode. The signifi-
cance of this “extrapolation criterion” is uncertain.
Calculations for a 13-layer slab show that as @
decreases, the nodeless character of the FK mode
is again passed from one mode to another and finally
appears at @ =0 in the even-parity TO surface mode,
as it does for the seven-layer slab. Again, both the
TO surface mode and the lowest TO bulk mode have
nonvanishing slopes at @ =0, but now the slope of
the bulk mode is greater than that of the surface
mode, and it agrees more closely with that of the
FK mode. Not only does the even-parity TO sur-
face mode have a small initial slope, but it has a
smaller total increase in frequency, thus remaining
more nearly degenerate with the odd-parity TO
surface mode (not shown in Fig. 5). The two crite-
ria now lead to different conclusions. We believe
that the number of nodes has little physical signifi-
cance in this case. The even-parity TO surface
mode is nodeless at @ =0, but the displacement am-
plitude of this mode is so small over most of the
interior of the slab that an exceedingly small per-
turbation can change the sign of the amplitude at
the center, introducing two nodes. The two nodes
in the lowest even-parity bulk mode are between the
first and second atomic layers from each surface,
so a very small perturbation can move these nodes
“outside” the slab, making the mode nodeless. For
this reason the final transfer of the nodeless charac-
ter from the bulk mode to the surface mode, which
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occurs as @~ 0, is relatively unimportant.

We conclude tentatively that the FK mode neither
becomes entirely the lowest bulk mode nor the sur-
face mode as @ - 0, but that both modes are in-
volved. For a very thin slab the surface mode is in-
volved to a greater extent than the lowest bulk mode,
whereas the reverse is true for a thick slab.

We now turn our attention to the y-polarized
modes of a seven-layer slab. There are seven TO
y-polarized modes and seven TA y-polarized modes.
Of each type, two are surface modes and five are
bulk modes. In Fig. 8 the upper pair of solid lines
are the uppermost and lowermost TO bulk modes
and the lower pair of solid lines are the uppermost
and lowermost TA bulk modes. The three remaining
bulk modes of either type are not shown in the figure
but remain at frequencies intermediate to these
pairs from @ =0 out to @ =0.50, the first zone
boundary. The upper dashed line in the figure rep-
resents two nearly degenerate TO surface modes of
opposite parities. Although both of these modes
are strongly localized at the surfaces at @ =0, as @
increases toward the zone boundary the surfacelike
character of both becomes rather ill defined. The
lower pair of dashed lines are two TA surface modes
of opposite parity, the lowest one occurring at w=0
at @ =0 and being of even parity. Neither of these
modes is localized at the surfaces at @ =0; the low-
est one corresponds to uniform translation of the
slab. They do become surfacelike in character with
increasing @, although not markedly so.

Before comparing the results of the present work
to those of Lucas, 2 Tong and Maradudin, ® and Chen
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FIG. 8. Dispersion relations for y-polarized modes of a 7-layer NaCl slab.
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et al.,* we should point out that, in view of the
present theory, Tong and Maradudin’s criticism of
the long-wavelength approximation used by Fuchs
and Kliewer does not seem to be totally correct. In
their expressions for the matrix elements of the
Coulomb interaction, DS(d; 23, I3; 7, j'), they cor-
rectly noted that the m =#=0 terms in their sums,
which are the same as the G=0 terms in the ex-
pressions presented in this paper and the integral
expressions used by Fuchs and Kliewer, vanish as
q — 0 while the remaining terms in the sums gives

a finite result. They contended that the theory of
Fuchs and Kliewer was therefore not valid for small
values of g since their integral expressions did not
contain the other G #0 terms of the sums. How-
ever, in Sec. V of this paper we have pointed out
that, for a uniformly polarized infinite crystal,
these G+# 0 terms are simply the Lorentz local field
correction, (47/3)P, which Fuchs and Kliewer do
include in their theory. The exponential dependence
on |13 =13l of these local field terms of the dynami-
cal matrix is such that, for long-wavelength oscil-
lations within the slab, the local field correction
differs significantly from -34-1r-15 only at those ion sites
in the surface layers of the slab. Thus, by taking
the local field correction to be +7P for all layers of
the slab, Fuchs and Kliewer did include all terms

of the sums appearing in the expressions for
DSp(@; 25, 15';,7") in their long-wavelength approxi-
mation. They simply neglected any changes occur-
ing in these terms for ions on the surfaces of the
slab in the same way that they neglected any changes
in the short-range forces contained in
Das (513, 13'55,).

The results of Lucas, Tong and Maradudin, Chen
et al., and the present work are all in agreement as
to the number and types of optical modes which are
localized at the surface at @ =0. That is, there are
no LO surface modes and four TO surface modes.
Of these four, the eigenvectors of two are polarized
in the x direction and of opposite parity and the
other two are identical except that their eigenvectors
are polarized in the y direction. None of the modes
found by Fuchs and Kliewer were localized at the sur-
faces at @ =0. The present theory indicates that
this is indeed due to their neglect of the changes in
the forces acting on surface ions, as suggested by
Lucas. A calculation of the y-polarized modes from
the present theory with the matrix elements for the
surface ions set equal to those for the bulk ions
yield no y-polarized surface modes of any type for
all values of @, indicating that this same reason is
also responsible for the fact that Fuchs and Kliewer
found no y-polarized surface modes.

For values of @ different from zero, several dis-
crepancies between the results of the present work
and those of Tong and Maradudin® appear. Tong and
Maradudin report a total of six optical surface
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modes occurring in three nearly degenerate pairs
represented by the three dashed lines in Fig. 9.

The two lower pairs, labeled by (b) and (c) in the
figure, are transverse, while the polarization of
the upper pair, (a), is not reported. Also the dis-
placement amplitudes of the upper pair are reported
to have very little attenuation at the point @ =0.

The two surface modes (a) appear to correspond
to the TO and LO surface modes we find in the same
frequency range. As @ (or k,)- 0, we find that the
two modes separate, one mode passing down through
the TO bulk modes, the other passing up through the
LO bulk modes. Tong and Maradudin chose their x
axis along a [100] direction rather than a [110] di-
rection as in the present work; this would certainly
affect the modes for large values of @ but should not
alter their qualitative behavior at small values of Q.
Their reported results were calculated for ¢,=0
and ¢,=0.2n7/7,with =0, 1, 2, 3, 4, and 5, g,
=17/7, being the first zone boundary along their x
axis. Their first nonzero ¢,=0.27/7, corresponds
to a value of our @=3¢,a/m=v1q,7/m=0.14. This
rather coarse mesh of values of ¢, might be respon-
sible for the reported absence of any splitting of the
modes (a) as ¢,~0. At g,=0 we find no modes cor-
responding to their modes (a).

The two surface modes (b) correspond to our odd-
parity TO surface mode and our lowest-frequency
even-parity TO bulk mode. Tong and Maradudin
carried out their calculations for a 15-layer slab,
whereas our calculations are for a seven-layer slab.
Since we have seen above that this particular bulk
mode changes to a surface mode as the slab thick-
ness increases, such an assignment is, in fact,
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FIG. 9. Dispersion relations of optical modes of a 15-

layer NaCl slab as reported by Tong and Maradudin (see
Ref. 3). Here k,=q7¢=1QV2.
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consistent. Finally, the two modes (c) agree with
our TO y-polarized surface modes.

Chen et al., * have calculated the normal modes
of an ionic-crystal slab containing 15 atomic layers.
Because of the greater number of layers, they find
more bulk modes and report one more surface mode
in the region immediately below the bulk modes than
we do; otherwise their results generally agree with
ours. They find additional surface modes near the
edges of the Brillouin zone, in regions of d space
which we do not examine. On the other hand, we
investigate the details of the modes near =0 more
thoroughly. For example, they do not report the
crossing near =0 of even- and odd-parity LO
modes, as we show in Figs. 3 and 4; presumably
their mesh of q values is too coarse to see the
crossing.

No calculations of the normal modes of the slab
including retardation were made in this work. Since
the elements of the dynamical matrix depend on w
in this case, one cannot use a simple diagonaliza-
tion procedure to calculate the normal-mode eigen-
frequencies and eigenvectors. However, the fact
that the dynamical matrix is found tobe Hermitian
for ¢ >w/c and non-Hermitian for ¢ <w/c is in
agreement with the existence of nonradiative and
radiative modes as found by Kliewer and Fuchs.’®
Also the structure of the retarded dynamical matrix
D€ is such that only the G=0 terms, i.e., the
macroscopic electric field, is changed significantly
by the inclusion of retardation and this change is
greatest in the region |qlSw/c.

In comparing our work to that of Bryksin and
Firsov, ® we note that although 24 surface modes
were not found in the present work, we do find that
two distinct types of surface modes occur depending
upon whether or not the changes in the short-range
forces acting on surface ions are included in the
theory. Inclusion of these changes results in modes
which are strongly localized at the surfaces for
'q~0, and exclusion of these changes results in
weakly localized surface modes for small . There
is no indication in the present work that the two
types exist separately for q ~0 and then merge as ¢
increases as suggested by Bryksin and Firsov.
Their conclusion concerning the validity of the di-
electric constant formalism used by Fuchs and
Kliewer is supported by the present work except for
the interactions which we found to occur between
surface and bulk modes. The effects of these inter-
actions are not included in the theories of either
Bryksin and Firsov or Fuchs and Kliewer.

X. OPTICAL PROPERTIES

The transmittance, reflectance, and absorptance
of a NaCl crystal slab of 15 layers have been cal-
culated using the theory given in Sec. III. The cal-
culations were made for both P and S polarizations
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of the electric field with an angle of incidence of 75
degrees and a damping constant y=5.0x10" sec™!,
(This choice of y will be discussed later.) The ab-
sorptance is plotted as a function of frequency for
the case of P polarization in Fig. 10, and for the
case of S polarization in Fig. 11.

The frequency range 2.2X10%sec™ =w=6.0x10"®
sec™! shown in Fig. 10 includes the =0 frequencies
of all optical modes of vibration.!® Outside this
region the absorptance becomes very small and will
not be discussed here. All absorptance peaks
shown in Fig. 10 arise from the xz-polarized opti-
cal modes. The absorptance peak occurring at
w=2.42X10" sec™! arises from the even-parity TO
surface mode which occurs at that frequency and is
seen to be comparable in size to the neighboring
peak at w=2.49%x10"® sec™'= wy,, which is the fre-
quency of the lowest TO bulk mode. The absorp-
tance peaks due to the other even-parity TO bulk
modes are not visible with the value of ¥ chosen.
Each of the eight peaks which occur in the range
4.0%10" sec™! =w =6.0%10' sec"! arises from one
of the eight odd-parity LO modes of the 15-layer
slab. The largest peak occurs at w="5.84x10*
sec™!=w; o, which is the frequency of the highest
LO mode.

For the case of S polarization, peaks in the ab-
sorptance occur only at w=2.42x10'® and 2. 49
X10'® sec™. These peaks arise from the even-pari-
ty y-polarized TO surface mode and the lowest-
frequency y-polarized TO bulk mode, respectively.
For S polarization, the electric field vector is in
the y direction and does not interact with the xz-
polarized modes. Thus there are no peaks and the
absorptance is small for w2 2.8x10'% sec™.

The transmittance and reflectance are not shown
for either polarization because the reflectance is
very small for this thin slab. A plot of 1 - T would
differ significantly from the given plot of A only
near the large peak occurring at w=5.85x10'® sec™!
for P polarization; here the reflectance reaches its
maximum value of 1.12x102,

These same optical properties of a 15-layer slab
were also calculated using the local approximation
of Sec. VI with y=5.0%10" sec™. There was no
significant difference between these results and
those of the nonlocal theory. Various values of ¥
were tried in both the local and nonlocal calcula-
tions and no significant differences were found for
any reasonable value of y.

The experiments of Haas'” and Jones et al. 18
indicate that a reasonable choice for a frequency-
independent damping constant should be in the range
10595102 sec™ for temperatures in the range
0<T75300°K. Although the location in frequency
of the absorption peaks does not depend on the value
of y chosen, they do become sharper and reach a
higher maximum as y decreases.
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FIG. 10. Absorptance as a function of frequency for P-polarized light incident at an angle of 75° on a 15-layer NaClslab.

In their work, Tong and Maradudin® calculated
the imaginary part of the local dielectric response
tensor €'?(w), which has peaks at the same fre-
quencies as the absorptance. Their calculation was
made for a 15-layer NaCl slab with no intrinsic
damping (y=0). The frequencies and relative sizes
of the peaks in €.2(w) reported by them agree fairly
well with the absorption spectra found in the present
work except that they reported no peak in (2‘,’"(@)) at
w=4.16Xx10" sec™! corresponding to the peak which
arises from the lowest-frequency odd-parity LO
mode in the present work. They also report two
small peaks in €.2(w) at w ~2.52x10" and 2.62
% 10" sec™! which presumably arise from TO bulk
modes but do not show up in the absorption spectra
of the present work. The absence of any peaks
arising from TO modes other than those shown in
the present work is due to the value of v chosen.
(Peaks in this region start to become visible for

ys$10" sec.)

We may also compare the results of the present
theory to the calculation by Berreman’ based on the
local dielectric function €(w) of an infinite ionic
crystal. He points out that for the case of P polari-
zation with non-normal incidence there is a compo-
nent of the electric field normal to the plane of the
slab and an absorption peak should therefore occur
at w =wy in this case. Using Maxwell’s equations
and matching appropriate boundary conditions at
the surfaces of the slab, he has derived expressions
for the transmittance and reflectance of a thin
ionic-crystal slab in terms of the slab thickness,
angle of incidence, and €(w) of the crystal. He
computed the transmittance of both S- and P-polarized
radiation by a lithium fluoride film 0. 20 u thick.
His calculations included a frequency-dependent
damping term y(w) and were made for an angle of
incidence of 30°. He also measured the transmit-
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FIG. 11. Absorptance as a function of frequency for
S-polarized light incident at an angle of 75° on a 15-layer
NaCl slab.

tance of a 0.20-p-thick LiF film for both polariza-
tions of the incident field. His theoretical and ex-
perimental results are shown in Figs. 12 and 13,
respectively. The dashed lines in these figures at
14.8 and 32.6 u denote the frequencies of the LO
and TO modes in an infinite crystal, wyo and wqpg.
From Fig. 12 we see that his calculated results for
the transmittance of P polarized light (solid line)
shows minima at both wro and wy, while for S
polarization (dashed line) there is a transmittance
minimum only at wro. This result agrees with the
present work. Berreman’s calculation does not

yield any of the other absorptance peaks found in the

present theory since €(w) contains no information

- about the remaining bulk and surface modes of the
slab. His experimental results show good qualita-
tive agreement with the predictions of his theory.

Although it is certainly not reasonable to attempt

any quantitative comparison of Berreman’s’ experi-
mental results to the results of the present work,
we should note that all features of Fig. 13 can be
qualitatively explained by the present theory. A
LiF film 0. 20 u thick contains approximately 103
layers of ions while the calculations of the optical
properties of the present theory were made for a
point-ion model of a NaCl film containing 15 layers
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FIG. 12. Transmittance of S-polarized and P-polarized
light incident at an angle of 30° on a 0.20-u-thick LiF slab
as calculated by Berreman (see Ref. 7).

of ions. From the present theory we would expect
that the LiF film would have a TO surface mode at
a frequency slightly below its transverse optical
frequency wyg, but that the absorptance due to this
surface mode should be much less than that due to
the bulk mode at wyo. This agreement offers a
possible explanation of the small dip in the trans-
mittance which occurs at approximately 36 p in
Fig. 13. The fact that this dip is seen for both P
and S polarizations is consistent with the assertion
that it arises from a transverse mode. We would
also expect, for the LiF film used by Berreman,
that approximately 5X 102 absorptance peaks arising
from odd-parity LO bulk modes should occur below
wyo in a range of frequencies Aw of approximately
the same width (Aw~2X 10" sec™) as that occupied
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FIG. 13. Transmittance of S-polarized and P-polarized

light incident in a cone from 26° to 34° on a 0. 20-u-thick
LiF slab as experimentally observed by Berreman (see
Ref. 7).
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by those peaks shown for the 15-layer NaCl slab.
(This width is determined by the bandwidth of the
LO branch of an infinite crystal.) Experimentally
these peaks would not be resolved, and one would
expect to see a smoothly varying absorptance in
this frequency range. The absorptance should
gradually increase as w increases from the fre-
quency of the lowest LO bulk mode to wyq; it shoul”
then decrease more rapidly with increasing fre-

quency greater than w;,o since there are no modes
found in that region. This behavior of the absorp-
tance should contribute to the asymmetry of the dip
in the transmittance of P polarized light at wyq in
Fig. 13. This behavior is neither expected nor
seen for S polarization because it is due to the ex-
citation of LO modes. Thus the present theory
offers a qualitative explanation of all of the struc-
ture exhibited by the transmittance in Fig. 13.

APPENDIX A

Here we list several representative elements of DC for I3=1;.
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APPENDIX B

Here we list the elements of D€ excluding retardation.

For l3#15:
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The pyroelectric coefficient (at constant stress) of lithium sulfate monohydrate was measured
over the temperature range 4.2-320°K, in order to resolve a discrepancy between the results of
Ackermann and those of Gladkii and Zheludev, and to extend the data to below 88°K. The pyro-
electric coefficient was observed to change sign at 106 °K in agreement with the results of

Gladkii and Zheludev.

The coefficient passed through a broad extremum at 50 °K and approached

zero at 4.2°K. The primary and secondary pyroelectric coefficients were calculated over the
temperature range; their cancellation at 106 °K causes the sign change in the pyroelectric coef-

ficient at constant stress.

The secondary coefficient is positive at all temperatures, but the

primary coefficient changes sign at 158 °K. The Born lattice-dynamical theory of the primary
pyroelectric effect was extended to include contributions due both to the acoustical and to the
optical spectra of a material. A Debye temperature and five Einstein temperatures calculated
from heat-capacity data were used to derive an analytical expression for the primary pyroelec-

tric coefficient.

INTRODUCTION

The first measurements of the pyroelectric co-
efficient of lithium sulfate monohydrate (LSM) were
published by Ackermann in 1915.! He determined
the pyroelectric coefficient (at constant stress) at
discrete temperature values between 23 and 352 °K,
using a static technique. He found that the coeffi-
cient increased montonically with increasing tem-
perature, with no change in sign at any tempera-
ture. Recently Gladkii and Zheludev? repeated
the measurements down to 88 °K, observing an
anomalous change in sign at about 110°K. To re-
solve the discrepancy, we repeated the measure-
ments, extending the temperature range down to
4.2°K in order to observe the very-low-tempera-
ture behavior of the pyroelectric coefficient. The
measurements reported here are thefirst continuous
ones over a broad temperature range ever deter-
mined on a pyroelectric but nonferroelectric ma-
terial. Using published piezoelectric, elastic,
thermal-expansion, and heat-capacity data, the
pyroelectric coefficients were resolved into the
primary and secondary components. An expression
for the primary pyroelectric coefficient was de-
rived by means of an extension of the Born lattice-
dynamics theory of pyroelectricity.

LSM is a monoclinic crystal, point group 2, with

the lattice parameters® ¢=8.18 A, b=4.87 4,
c=5.45 A, and B=107.3°. Bechmann! has pub-
lished piezoelectric and elastic compliance con-
stants referred to a set of axes in which z is co-
linear with a, x lies in the obtuse angle between

a and ¢, and y is parallel to b, but is directed so
as to make a left-handed set of coordinates with x
and z. Although this usage is not strictly accord-
ing to the IRE convention,® Bechmann’s system has
been adopted in the literature® and it will be used
here. Calculations described later in this report
utilized the elastic compliance coefficients (s), the
piezoelectric stress coefficients (d), their tem-
perature dependencies, and the thermal-expansion
coefficients (a). These coefficients, correspond-
ing to the coordinate system described above, were
calculated from the original references.®” There
were a few minor discrepancies between some cal-
culated values and those reported in Landolt-Born-
stein,* the differences probably being the result of
round-off errors.

EXPERIMENTAL METHOD AND RESULTS

The pyroelectric coefficient was determined at
constant stress using the dynamic technique of
Lang and Steckel.® In this method, the coefficient
is calculated from the pyroelectric voltage produced
as the temperature of the material under study is



